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An analytic method is proposed for solving nonstationaryheat conductionwith transport coeffi-
cients dependent on the coordinates. The temperature distributions in soils have been ex-
amined for harmonic and exponential laws of variation for the air temperature in greenhouses.

A major factor determining the growth and development of plants in a greenhouse is the provision of the
best thermal conditions in the root layer of the soil. The thermal conditions in the soils of solar greenhouses
are produced mainly by solar radiation and the warmth of the air within the greenhouse [1]. It is very compli-
cated to find the temperature distribution in the soil, where various transport factors are involved (convection,
conduction, and radiation) [2].

The use of an equivalent thermal conductivity [2] is an effective means of formulating a model for heat
transfer in the soil that enables one to avoid some of the difficulties in solving the transport equations. The
approach enables one to perform a theoretical study of the temperature distribution in a soil by the solution
of a single heat-conduction equation with variable thermophysical coefficients dependent on the coordinates
and time.

~ The researches of [2] have yielded some empirical relationships for the thermophysical characteristics
of soils. Therefore, the theoretical aspect of the problem is that one has to obtain the corresponding solutions-
to the equivalent equation of thermal conduction for these relationships and thus provide a method for calculating
the temperature distribution in particular soils.

Here we present a simple and reliable analytic method of handling problems in nonstationary thermal con-
duction with variable and constant transport coefficients, which was fairly fully developed in [3]. The use of
this method in the analytical theory of soils enables one to solve new problems in a simple fashion.

Measurements show that the maximum penetration depth of the temperature perturbation in a soil in re-
sponse to diurnal variations in air temperature in a greenhouse may be taken as I =0.5 m. Let the air tempera-
ture follow the law ¢ (t), while the heat transfer between the air and the surface of the soil follows Newton's
law:

(7» £> — [T ) — o],y ?
ax x=0 '

Here o is the effective heat-transfer coefficient, which includes the fraction of the heat flux obtained by
the soil from solar radiation. Then the temperature distribution T(x, t) within the soil (0 =x=1) is found by
solving

T
ot my ot =2 [x(x, m)—‘;;] T, 0)=T,, @
aT _ _ 5 9T ) =0. (3
(58], o 0= (50)

_The effective variable thermal conductivity and specific heat are often approximated in the following form [2]:
}"(x7 m2) = }"0[1 +fh(x7 m2)]’ C(x, mi) = CO[I + fc (X, mi)]’
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where the functions £\ and f; safisfy the conditions

Hmf, (x, m) =0, limf, (x, m) =0, limf,{(x, m,) = const,
x-0 x>0

mg~>0Q
lim f, (x, m)) = const.
my—~0
We introduce the relative coordinate ¢ =x/ and the dimensionless time Fo =a /L2, where @y =X (0, m,)/c(0, m,);
then the problem of (2) and (3) reduces to

oT 0! oT ,
14 =—|(1+ D) — 1|, TE 0) =T, 4
[14 7. E B 3Fo 3 [(1 N (& B) ag] TE 0 =T,
T — _ Bi¢(Fo), (OT\ =0, 5)
{ag Bi T (, Fo)}gzo i ¢ (Fo) P )E:l (

where Bi=al/ Ay By =my/l; B,=m,/l; the parameters 8, and B, are the correcting parameters for the nonuni-
formity in the thermophysical coefficients. As S, and B, become smaller, the changes in the thermal conductiv-
ity and specific heat with the coordinate x become weaker, and for 8y =3, =0 the problem of (4) and (5) becomes
that of thermal conduction with constant transport coefficients.

We denote by ’1_‘(5 , s) the integral Laplace transform of the temperature distribution, i.e.,

TE s) = VS:GT (£, Fo)exp (—sFo)dFo.
b

Then with the conversion formula ¢7/9 Fo = sT (& s)— T (& O} the problem of (4) and (5) after Laplace transforma-
tion amounts to solving the boundary-value problem

d T —
|G BT |6 9= T+ & ) = (6)
dT . - dT
{Tg —Bi T (g, s)}gz0 = —Big(s), (E)E:I =0. (7

One obtalns a very complicated functional dependence for the exact solution of this boundary-value problem
even for simple particular cases, and it is not always possible to find a way of converting the transform ’f‘(.g , 8)
to the original T(¢, Fo). Therefore, an approximate method of solving (6) and (7) has been developed such as
to provide a solution to the initial problem as a simple analytic formula, which is of considerable practical
importance. Developments in this area include orthogonal projection (Galerkin's method) for (6) and (7), whose
essence is as follows. An approximate solution is found as an element in functional space whose bases ¥4(¢),
P3(8), ..., Yu(&) satisfy the homogeneous boundary conditions of (7), i.e.,

diy, - {O‘Pk} _ .
-—B =0, |—= =0, k=12 ...,n,
{ dE ‘q%}g=o & o

in a linear-composition family of the form

Tu@ ) =0() + 2 () s (B). ®
k=1
We taken the following as basis coordinate functions:
Bi
WO = D (1B, = (gD, £>2,

for which (8) satisfies the boundary conditions of (7) exactly.

The transform coefficients c_zk(s) are projections of the vector Ty, 8) — g_b(s) on the coordinate axes of
the functional space _and are found from the condition of orthogonality for the discrepancies in (6) as found by
substituting (8) for T(¢, s) for all the basis functions zl)j(g ):

dT,
13

1
d i —_
g{-g[(l+fa(§. DR ]——[sma 9Tl (1 + 1. & ﬁ,»]widg:o,

i=12 ..., n



After integration with respect to the variable ¢ for particular forms of f; and f;, the system becomes

{3 A+ B9 @ () = [To—se@I Di}, f=1,2, ..., n, 9)
B=1 .

where

1
Ay = Ay = —h%[“ 4 "j; ]wj<a>d§>o;
\ :
1

1
Bjy = By = | (14 [o) ¥sbnd& Dy = | (1 + 1) wsdt.
0 ]
We determine the coefficients c_tk(s) from (9) from Cramer's formula:

Eh (S) — Ah (S)[TK (;)' SQ (S)] , (10)

where (8) gives the best approximation to the solution to (6) and (7), and we transfer to the region of the originals
to find the solution to the initial problem as

n

T\ (€ Fo) = ¢ (Fo) + 3 ax (Fo) s (9, (11)
k=1

where A(s) =| A+Bs| is the basic determinant of (9); Ay(s) is the determinant obtained by replacing column k
by the coefficients Dy, Dy, ..., D, in the determinant A(s). The roots of A(s) =0 are always simple and negative.
We denote them by sy, 8, ..., Sy in order of increasing magnitude. Then the theory for transforming a frac-
tionally rational function with simple poles and the convolution theorem [4] give us that

o A (Si)
where ¢* (Fo) is the original of T;— s@(s). This is a general scheme for complex use of integral transformation
and the projection method in heat transfer.

n Fo )
ay (Fo) = —Ah—(fi)— ( o* (1) exp [s; (Fo — 1)l dv, (12)
A 0

To compare the approximate solutions with known exact ones, we first consider a problem with constant
specific heat and thermal conductivity. For B;=8,=0 the coefficients in the truncated first~order system

(A + Bus) @, (s) = [To— 59 (5)] Dy (13)

are found in the form
1 1

AMZ—S‘ i ¢1d§=2HBi+,2 —(1—§)2]dg=___4(3i+3) ,
§ ) |

dg? Bi 3Bi

1
4 (2Bi2 -+ 10Bi - 15) 2(Bi+ 3)
By = 2dE = D, =2\
" g ik 15Bi2 P 3Bi
(]
whence
- ABI)IT,—se(s)]
ay(s) = 25+ ABN] ’ (14)
where
A(Bi) — 5Bi (Bi -~ 3) (15)

9Biz 4- 10Bi+15

Weput @(Fo)=T.>T, ( @ (s) = T ) and then the temperature distribution within the soil for a constant air
A \ s
temperature is found from
Bi-- 2
Bi

T Fo)= Top Lo T ABY oy 4 (Bi) Fol [

: —(1— §>2]. (16)
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Fig. 1. Variation in the relative excess temperature at the surface
(¢ =0) and within the soil (¢ =0.25) for harmonic variation in the air
temperature: 1) Bi=1; 2) 4; 3) 10,

Fig. 2. Variation in temperature in the soil for an exponential rise
in air temperature in the greenhouse: 1) £ =0; 2) 0.25; 3) 0.5.

The relative excess temperature provided by the solution of (18) is written as

TE Fo—T, _,_ _A(B Bi +

T, — T, 2 [ Bi
Numerical analysis shows that the approximate solution of (17) is virtually the same as the exact one for the
range (< Bi=1; the deviation from the exact solution increases monotonically with Bi and attains its maximum
value for Bi =« (boundary conditions of the first kind). Examination of this limiting case, where the tempera-
ture at the surface x=0 is constant at T, gives good agreement with the exact solution for Fo=0.05.

8 (Ea FO) =

—(1— g)ZJ exp [—A (Bi) Fo]. a7

Figure 1 shows variation in A(Bi), which governs the rate of exponential stabilization of the temperature
pattern, and provides comparison with the square of the first root u% of the characteristic equation ctg p =p/Bl;
as Bl varies from 0 to 1, the value of A(B{) exceeds uf, and the error increases monotonically from zero to
0.08% at the point Bi=1. For Bi=10, Bi =« the corresponding errors in A(Bi) are 1 and 1.3%. Therefore, the
temperature stabilization in the approximate solutions gives good agreement with the stabilization in the exact
solution.

Calculation of the temperature for the stepwise change in temperature in the boundary conditions at the
initial instant, as in the solution of (17), produces the largest errors; if there is continuous variation in @ (t)
with the initial distribution T, (lim @(¢)=T,) , then the error in calculating the temperature becomes less.

-0

We now determine the temperature distribution in the soil for harmonic variation in the air temperature
in the greenhouse:

. . 2nvi?
@ (f) = Ty + AT sin 2nvt = Ty, + AT sinwFo, o = Pd = .

a

We substitute the value ATw

7 = Loy ATe
®(s) = — T el

into (14) to get

A (&) =—

A (Bi) ATos _AB)HAT [ B L Ds+E
2 (s A2+ 0?) 2 [s+A s2+m2]'

o
Lo
o7



After we have determined B, D, and E by means of undefined coefficients we get

7 ()~ A (Bi) AT { A (Bi) . 1 A(Bi)s @2 ]
! 2 [A2(Bi) 4 o?l(s + 4) A2+ w? [ 20 24 (02”'
whence :
2, (Fo)— A (B12) ®AT {Aff:))z exp [—A (Bi) Fo] — yo _’1_ o [Acos®Fo 4+ esinw Fo]} .

We put

———A——— sin S €os

V-ZZ:—(SZ - (PO, V-Am - (901
and then the relative excess ten_lperature is found from
0, Fo, Bi) = TEFI—=T _ g oFo + A(Bi) {______sin 2%
AT ’ 2 2
X exp'(uA {Bi) Fo)) — cos g, sin {w Fo - %)H Bl; 2 _ (1— E)Z] . (18)
i

Figure 1 shows the variation in 8 for Bi=1, 4, 10 at the points £ =0, 0.25; if the values of the thermal diffusiv-
ity, Bi, and thickness ! are known for a particular soil one can calculate the temperature from (18) in terms
of the dimensional coordinates x and time t.

~ The availability of (14) enables one to find the solution for any other laws of variation in the air tempera-
ture.

We now consider the problem of (2) and (3) with c(x, m,) =c(1+m;x), A(x, my) =A (1 +m,x), the values
being taken from [2].

In our symbols we have

Vo€ B) =14 BE 11 B =1+ Bk

The coefficients for the first-order system of (9) are

A _ 4(Bi+3)+B,Bi B' _ 8(2Bi? 4 10Bi+ 15)+p, (11Biz +-50Bi+60)

" 3Bi " 30Bi? ’

D, = 8 (Bi + 5) + B, (6Bi 4 12)
12Bi ’

and the solution is

- [To— s ()] D (Bi, By
ai (S)Z §+A(Bl’ 611 ﬁZ) 1 !

(19)

where
10Bi [4 (Bi + 3) 4 B,Bi]
8 (2Bi% + 10Bi + 15) + B, (11Bi? -+ 50Bi 4- 60)
" 5Bi[8(Bi + 3) 4 By (5Bi 4 12)]
28 (2Bi2 + 10Bi - 15) -+ B, (11Bi* - 50Bi - 60)]
If the air temperature in the greenhouse rises exponentially in the form ¢ (Fo) =T;+(T¢ — T [1 — exp(~PdFo)],
To | Pd(T,—T,)

A(Bir [31’ E’Z) = 20

D(Bi, B) = (21)

we substitute the value ¢(s) = —+ P ST into (19) to get
: S{s
71 (9= DBl BT —Ty) Pd[ 1 1 }
' A(Bi, By B)—Pd | s+A(Bi, By, B)  s+Pd ]’

Transfer to the originals gives

8, Fo, Bi, By, ﬁz) = T T
c— 4o

= 1-—exp (—-Pd.Fo) +
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Bi +2

DB, P)Pd_ (0 (A, s ﬁz)Fol—eXP(*PdFO)}[ Bi _(1_5)2], “

A (Bi, By, B)—Pd

Figure 2 shows the variation in 8 for Bi=4, Pd=2, and a constant specific heat, 8, =0, 8,=0.5, 1 at the
points £ =0, 0.25, 0.5.

With boundary conditions of the first kind (Bi =«) we get from the solution to (22) for the case 5;=0,
By# 0 that

5Pd ‘
4125 + 0.6258, — Pd]
If thereis a decaying amplitude for the harmonic oscillation of the air temperature ¢ (Fo) =T;+AT exp (—PdFo) -
sin w Fo, then the relative excess temperature in the soil is given by
T & Foy— T,
AT

0, Fo, Py)=1—exp (—PdFo) {exp [—(2.5 + 0,625p,) Fo] — exp (—PdFo)}(2& — £3). (23)

6 (&, Fo, Bi, By, Bo) = = exp (—Pd Fo)sinw Fo +

wz—ﬂlfi—*/l)z {Aw exp (—AFo) — exp (—Pd Fo){4w cos ® Fo + (Pd(Pd— 4) + ¢?) sin » Fol} [—8—1;—2 (1 - §)Z} 24)
In the solutions to (22)-(24), the coefficient for the rate of exponential stabilization of the temperature pattern
defined by (20} increases with 8,, the correcting parameter for the nonuniformity in the thermal conductivity,
and it is inversely proportional to 54, which is in accordance with the physics of thermal conduction. In con-
clusion we note that these studies show that it is possible to solve the heat-conduction problem with any other
empirical formulas for the variable specific heat and thermal conductivity, which are dependent on the coordi-
nates, and these constitute models for heat-transfer processes in the soil.

NOTATION

Fo = at/1?, dimensionless time (Fourier number); s, integral Laplace transform parameter; Pd = 2mvl¥/q,
Predvoditelev number; ¢ = x/1, dimensionless coordinate; Bi, Boit number,
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